
DOI: http://dx.doi.org/10.4038/jnsfsr.v48i1.8950

software engineering

1, C Samarage1 1 2* and P Wimalaratne1

1

2 Faculty of Information Technology, University of Moratuwa, Katubedda, Moratuwa.

Submitted: 26 March 2019; Revised: 03 June 2019; Accepted: 27 September 2019

* Corresponding author (chaman@uom.lk; https://orcid.org/0000-0002-1124-425X)

This article is published under the Creative Commons CC-BY-ND License (http://creativecommons.org/licenses/by-nd/4.0/).

This license permits use, distribution and reproduction, commercial and non-commercial, provided that the original work is

properly cited and is not changed in anyway.

107.2019

The paradigm shift of ‘Build Security In’ has

emerged in recent decades with the underpinning idea that

software security has to be an integral part of all the phases

of the software development lifecycle. As a result, each

practices such as threat modelling and static code analysis. It

was observed that various artefacts (i.e., security requirements,

as a result of security best practices tend to be disconnected

incorporated in the implementation level. In order to address

this issue, this paper presents a knowledge-modelling based

approach to semantically infer the associations between

bugs, which is manually tedious. Threat modelling and static

respectively. The case study based experimental results reveal

originating security bugs in the code level.

 Security touchpoints, software security, static code

analysis, threat modelling.

INTRODUCTION

Security vulnerabilities in software can imperil intellectual

property, consumer trust, and business operations and

services (Wang et al., 2009). The consequences of security

breaches lead to both tangible (e.g., loss of business

and productivity) and intangible (e.g. customers trust)

critical need for software

security, the paradigm shift of ‘Building Security In’ has

et al., 2016; Piessens & Verbauwhede, 2016). This

paradigm shift requires software security to be addressed

in all phases of the software development lifecycle.

Literature reveals that most security vulnerabilities result

from defects that are unintentionally introduced in the

software during the design phase and the development

code reviews and architectural risk analysis as the top

two best practices to minimise the security vulnerabilities

in software systems. These best practices called security

touchpoints are associated with the artefacts produced

during the implementation phase (i.e., code base) and

the design phase (i.e., design documents), respectively

in the traditional software development lifecycle. Even

in organisations with mature software development

processes, software artefacts created end up to be

disconnected from each other (Antoniol et al., 2000).

Furthermore, to the best of our knowledge, existing

associations between the artefacts generated in each

phase of the lifecycle. This incapability reveals a critical

research gap of semantically interlinking the artefacts

originated at the implementation phase of the design

phase. This paper presents a conceptual framework

and a proof-of-concept implementation to semantically

on STRIDE (Hernan et al., 2006) threat categorisation

 A Abeyrathna et al.

March 2020 Journal of the National Science Foundation of Sri Lanka 48(1)

model introduced by Microsoft, which helps to identify

threats from the attackers’ perspective by classifying

attackers’ goals into 06 threat categories. Security bugs

are determined based on OWASP Top 10 (Wichers,

2013) vulnerabilities, which is the ten most critical web

application security risks providing a great awareness

interlinked by employing a knowledge-modelling based

technique, which facilitates inferring the associations

that are manually tedious.

METHODOLOGY

This approach aims at inferring the associations between

during the design phase and the implementation phase of

the software development lifecycle. As stated previously

categorisation and security bugs are represented regarding

OWASP Top 10 vulnerabilities. The approach consists

identifying security bugs, and inferring relationships

analysis, which includes explicitly identifying security

risks in the software architecture that were produced in the

design phase of the software development. In this paper,

threat modelling has been used as the architectural risk

analysis method due to several noteworthy reasons such

as the ability to work with high-level design diagrams,

tool support. For example, the threat-modelling process

According to Abi-Antoun et al. (2007), architectural level

Level 0 or Level 1 DFDs. The threat modelling process

consists of three steps: decomposition, determination and

ranking of threats, and countermeasures and mitigation.

Decomposition: This step is concerned with gaining an

understanding of the application and how it interacts with

external entities. This knowledge helps in identifying

entry points to see where a potential attacker could

interact with the application.

Determination and ranking of threats: In this step,

threats are determined and categorised according to a

threat categorisation methodology. The goal of threat

categorisation is to identify threats from both the

attacker’s perspective and defensive perspective.

Countermeasures and mitigation: In this step, mitigations,

Static analysis is a well-known software engineering best

practice that is used to detect the security bugs that appear

in the source code of a software system. For adequately

understanding the code level security bugs, they are

categorised based on OWASP Top 10 vulnerabilities.

OWASP Top 10 is the ten most critical web application

security risks, which provide a powerful awareness

document for web application security. Although the static

analysis detects the bugs that are categorised into OWASP

systems is highly questionable (Wijesiriwardana &

Wimalaratne, 2017). Therefore, it was decided to utilise

OWASP Proactive Controls (www.owasp.org), which is

a set of developer-centric security techniques that can be

included in every software project. The OWASP Top 10

vulnerabilities have been mapped to proactive controls as

suggested in UcedaVelez and Morana (2015).

and bugs are expected to obtain via STRIDE and

OWASP. However, STRIDE mainly focuses on the

attacking perspective of software security. On the

other hand, Application Security Frame (ASF) is a

threat categorisation model, which helps to identify the

threats from the defensive perspective. For an in-depth

data and functional assets, both the attacker view and

the defensive view for the enumeration of threats were

considered as essential. As stated previously, the threat-

modelling process only focuses on attacker’s perspective.

Therefore, to involve the defensive standpoint, a

ASF. As indicated earlier, a knowledge base is used

to identify the association between threat categories

and bug categories through a semantic text similarity

matching model. The set of countermeasures of ASF and

summarised proactive control descriptions were used to

get the semantic similarity between ASF and proactive

controls.

Towards secure software engineering

Journal of the National Science Foundation of Sri Lanka 48(1) March 2020

Semantic text similarity between ASF and proactive

controls

The semantic text similarity was calculated for every

single security control in ASF with every single proactive

control. The descriptions of ASF security controls and

proactive controls are not limited to a single phrase.

Accordingly, the semantic text similarity of each phrase

of the description of a particular ASF security control

was calculated concerning each phrase of the description

of proactive control. Consequently, by borrowing the

semantic similarity concepts presented in Han et al.

(2013), the average semantic similarity score between a

(Pi) was calculated as follows.

where:

Ai : description of ASF having n phrases

Pi : description of proactive controls having m phrases

Vi : similarity between phrase i of ASF and phrase i of

proactive control

Knowledge base

It contains the facts and rules related to the STRIDE, ASF,

OWASP T10, proactive controls and semantic similarity

scores between ASF and proactive controls. A frame-

based approach was used for knowledge representation

of facts (Merritt, 2012). Below is the structure of the

frame for STRIDE.

Listing 1: Frame for STRIDE categories

frame (stride,

information disclosure, denial of service,

Eleven prolog rules were developed to infer the

association between STRIDE and OWASP T10. Due

to the space limitations only two rules are listed here

together with a short description of each.

Rule 1 - Querying the knowledge base

 BugCategory, T), TList),

Rule 1 is used to query the knowledge base. The list of

unique threat categories can be discovered by querying

the knowledge base using a bug category.

Rule 2 - Discovering associated threat category using the

bug category

isCausedByThreatCategory(BugCategory , T) :-

lacksProactive(BugCategory , P), mapsToSecurity-

Control(P , S),

isWeakendByThreatCategory(S , T)

Rule 2 discovers the associated threat category utilising

the bug category. The threat category was revealed using

the subsequent rules on the right-hand side. The lacks

Proactive (BugCateogry, ProactiveControl) was used

to discover the proactive controls violated due to the

given bug category. The association results given by

the knowledge base were used to create the associations

between bugs and threats.

In this research, as a proof-of-concept, a security analysis

framework called Conexus has been implemented

to infer the relationships between design and

implementation artefacts by adhering to the principles

described previously. Conexus framework has four

main constituents: threat-based processing, bug-based

processing, association inferencing, and knowledge base.

The source code of the implementation can be found in a

public Github repository

SecurityFramework.

Threat-based processing

Conexus required the user to draw the Level-0 or Level-1

DFD of a particular software application to generate the

Threat Model. MS TMT (www.microsoft.com/en-us/sdl)

 A Abeyrathna et al.

March 2020 Journal of the National Science Foundation of Sri Lanka 48(1)

is used for this purpose, and it creates a threat model,

which includes threats categorised according to STRIDE

categorisation. The threat model generated from MS

TMT was obtained as an XML, which is further processed

to extract threats. After that, the extracted threats were

converted into threat objects, which contains the relevant

details of risks introduced by this component.

Security bug-based processing

As of now, Conexus framework analyses the source code

using SonarQube (www.sonarque.org), which is a widely

used tool for continuous code quality improvements.

categorised into OWASP T10. The bugs were further

category objects adhere to OWASP T10. Then the bug

category objects were passed to association inference

module.

Association inference module

Association loader was used for querying the knowledge

base using the bug category objects to identify the

associated threat categories. A prolog converter was

built in SWI-Prolog to communicate with Java. Each

bug category was used to query the knowledge base,

and the associated threat type results were held inside

the association loader. The associated threat type results

and the bug objects were sent to the association linker.

Threat category objects from STRIDE transformer and

associated threat types and bug objects from association

loader were the input to the association linker.

Accordingly, the association objects were generated.

Knowledge base

The knowledge base was built using the SWI-Prolog. All

the facts and rules aforementioned are contained in the

knowledge base. The knowledge base has the capability

of revising when the OWASP T10 or proactive controls

are revised. On the other hand, knowledge base explicitly

allows expanding the knowledge contained in it using the

additional knowledge of security experts.

RESULTS AND DISCUSSION

lie in the design phase of the software system. A case

study based evaluation was employed for the evaluation

process of this approach.

 DFD of the user authentication component of the

web application

Case study: User authentication component of a web-

based application

Figure 1 presents the DFD of the user authentication in

a web-based application. It consists of two processes,

one external entity, and a single data store together with

modelling is conducted to identify the architectural-

the security bugs at the implementation level. The

association derived between security bugs and the threats

are based on the security bug categories and threat

by the threat modelling process. Similarly, through static

code analysis, A2, A5, and A6 categories of OWASP

have been captured. A1 to A10 are known as the top ten

highly relevant causes (threat categories) of the security

application

Threat type Number of threats

Tampering 4

Repudiation 4

Information disclosure 2

Denial of service 9

Elevation of privilege 8

Towards secure software engineering

Journal of the National Science Foundation of Sri Lanka 48(1) March 2020

countermeasures were applied to remove the security

bugs in the source code.

 After repeating static analysis, it was observed that

previously designated A2, A5 and A6 bug categories

were removed successfully. Hence, it was evident that

design level leads to the security bugs at the code level.

However, the accuracy of the results obtained from the

experiments depends on the analysis outputs given from

SonarQube, MS TMT as well as the semantic similarity

scores.

 The associations derived from the Conexus

framework depicted the possible causes for a security

bug. It was observed that, even with such an association,

source code because the DFD was a Level 0 diagram.

Therefore, it is crucial to identify the lower level DFDs

can be used conjointly with the re-engineering process of

a previously developed software where the association

security in the software. Implementation of a software

application sometimes includes the use of legacy

software components. Thus, the Conexus framework can

be used to ensure the security of the legacy components,

a security-focused agile development environment,

Conexus framework can be used to ensure the security of

the working software in each product increment.

CONCLUSIONS

This paper presents a knowledge modelling-based

design phase. The association is derived by identifying

threat categories and bug categories based on well-known

show the fact that architectural level security issues lead

to security bugs in the code base. On the other hand, the

conceptual approach of this research could be applied

to interlink various other software artefacts to discover

unthought-of-yet-interesting hidden relationships of

software systems.

 The framework could serve as a stepping stone to the

lacking previously. On the other hand, the knowledge

aspects. As future work, the experiments are expected

to repeat for large-scale open source software systems.

Furthermore, it is planned to improve this research to

utilising attack trees or case-based reasoning.

provided by the National Research Council of Sri Lanka

(Grant No: NRC 15-74).

REFERENCES

Abi-Antoun M., Wang D. & Torr P. (2007). Checking

conformance and security. Proceedings of the 22nd IEEE/

ACM International Conference on Automated Software

Engineering, Atlanta, USA, pp. 393–396.

 DOI: https://doi.org/10.1145/1321631.1321692

Antoniol G., Canfora G., Casazza G. & De Lucia A. (2000).

Information retrieval models for recovering traceability

links between code and documentation. Proceedings of the

IEEE International Conference on Software Maintenance,

San Jose, USA, 11–14 October, pp. 40–49.

 DOI: https://doi.org/10.1109/ICSM.2000.883003

Erlingsson U. (2016). Data-driven software security: models

and methods. th Computer Security Foundations

Symposium (CSF), Lisbon, Portugal, 27 June–1 July, pp.

9–15.

 DOI: https://doi.org/10.1109/CSF.2016.40

UMBC_EBIQUITY-CORE: semantic textual similarity

systems. Second Joint Conference on Lexical and

Computational Semantics (SEM), Atlanta, USA, volume 1,

pp. 44–52.

Hernan S., Lambert S., Ostwald T. & Shostack A. (2006).

stride approach. MSDN Magazine-Louisville, pp. 68–75.

The practice of secure software development in SDLC:

an investigation through existing model and a case

study. Security and Communication Networks 9(18): 5333–

5345.

 DOI: https://doi.org/10.1002/sec.1700

McGraw G. (2004). Software security. IEEE Security and

Privacy 2(2): 80–83.

 DOI: https://doi.org/10.1109/MSECP.2004.1281254

Merritt D. (2012). Building expert systems in Prolog. Springer

Science and Business Media. Berlin, Germany.

Piessens F. & Verbauwhede I. (2016). Software security:

vulnerabilities and countermeasures for two attacker

models. Proceedings of the 2016 Conference on Design,

Automation and Test in Europe, 14–18 March, Dresden,

 A Abeyrathna et al.

March 2020 Journal of the National Science Foundation of Sri Lanka 48(1)

Germany, pp. 990–999.

 DOI: https://doi.org/10.3850/9783981537079_0999

UcedaVelez T. & Morana M.M. (2015). Risk Centric Threat

Modeling: Process for Attack Simulation and Threat

Analysis. John Wiley & Sons, Hoboken, USA.

 DOI: https://doi.org/10.1002/9781118988374

Wang J.A., Wang H., Guo M. & Xia M. (2009). Security

metrics for software systems. Proceedings of the 47th

Annual Southeast Regional Conference, pp. 1–6.

 DOI: https://doi.org/10.1145/1566445.1566509

Wichers D. (2013). Owasptop-10 2013. OWASP Foundation.

Wijesiriwardana C. & Wimalaratne P. (2017). On the detection

and analysis of software security vulnerabilities. IEEE

International Conference on IoT and Application (ICIOT),

19–20 May, Nagapattinam, India, pp. 1–4.

 DOI: https://doi.org/10.1109/ICIOTA.2017.8073635

