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The paradigm shift of ‘Build Security In’ has 

emerged in recent decades with the underpinning idea that 

software security has to be an integral part of all the phases 

of the software development lifecycle. As a result, each 

practices such as threat modelling and static code analysis. It 

was observed that various artefacts (i.e., security requirements, 

as a result of security best practices tend to be disconnected 

incorporated in the implementation level.  In order to address 

this issue, this paper presents a knowledge-modelling based 

approach to semantically infer the associations between 

bugs, which is manually tedious. Threat modelling and static 

respectively.  The case study based experimental results reveal 

originating security bugs in the code level.

 Security touchpoints, software security, static code 

analysis, threat modelling. 

INTRODUCTION

Security vulnerabilities in software can imperil intellectual 

property, consumer trust, and business operations and 

services (Wang et al., 2009). The consequences of security 

breaches lead to both tangible (e.g., loss of business 

and productivity) and intangible (e.g. customers trust) 

critical need for software 

security, the paradigm shift of ‘Building Security In’ has 

et al., 2016; Piessens & Verbauwhede, 2016). This 

paradigm shift requires software security to be addressed 

in all phases of the software development lifecycle. 

Literature reveals that most security vulnerabilities result 

from defects that are unintentionally introduced in the 

software during the design phase and the development 

code reviews and architectural risk analysis as the top 

two best practices to minimise the security vulnerabilities 

in software systems. These best practices called security 

touchpoints are associated with the artefacts produced 

during the implementation phase (i.e., code base) and 

the design phase (i.e., design documents), respectively 

in the traditional software development lifecycle. Even 

in organisations with mature software development 

processes, software artefacts created end up to be 

disconnected from each other (Antoniol et al., 2000). 

Furthermore, to the best of our knowledge, existing 

associations between the artefacts generated in each 

phase of the lifecycle. This incapability reveals a critical 

research gap of semantically interlinking the artefacts 

originated at the implementation phase of the design 

phase. This paper presents a conceptual framework 

and a proof-of-concept implementation to semantically 

on STRIDE (Hernan et al., 2006) threat categorisation 
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model introduced by Microsoft, which helps to identify 

threats from the attackers’ perspective by classifying 

attackers’ goals into 06 threat categories. Security bugs 

are determined based on OWASP Top 10 (Wichers, 

2013) vulnerabilities, which is the ten most critical web 

application security risks providing a great awareness 

interlinked by employing a knowledge-modelling based 

technique, which facilitates inferring the associations 

that are manually tedious.

METHODOLOGY

This approach aims at inferring the associations between 

during the design phase and the implementation phase of 

the software development lifecycle. As stated previously 

categorisation and security bugs are represented regarding 

OWASP Top 10 vulnerabilities. The approach consists 

identifying security bugs, and inferring relationships 

analysis, which includes explicitly identifying security 

risks in the software architecture that were produced in the 

design phase of the software development. In this paper, 

threat modelling has been used as the architectural risk 

analysis method due to several noteworthy reasons such 

as the ability to work with high-level design diagrams, 

tool support. For example, the threat-modelling process 

According to Abi-Antoun et al. (2007), architectural level 

Level 0 or Level 1 DFDs. The threat modelling process 

consists of three steps: decomposition, determination and 

ranking of threats, and countermeasures and mitigation.

Decomposition: This step is concerned with gaining an 

understanding of the application and how it interacts with 

external entities. This knowledge helps in identifying 

entry points to see where a potential attacker could 

interact with the application. 

Determination and ranking of threats: In this step, 

threats are determined and categorised according to a 

threat categorisation methodology. The goal of threat 

categorisation is to identify threats from both the 

attacker’s perspective and defensive perspective. 

Countermeasures and mitigation: In this step, mitigations, 

Static analysis is a well-known software engineering best 

practice that is used to detect the security bugs that appear 

in the source code of a software system. For adequately 

understanding the code level security bugs, they are 

categorised based on OWASP Top 10 vulnerabilities. 

OWASP Top 10 is the ten most critical web application 

security risks, which provide a powerful awareness 

document for web application security. Although the static 

analysis detects the bugs that are categorised into OWASP 

systems is highly questionable (Wijesiriwardana & 

Wimalaratne, 2017). Therefore, it was decided to utilise 

OWASP Proactive Controls (www.owasp.org), which is 

a set of developer-centric security techniques that can be 

included in every software project. The OWASP Top 10 

vulnerabilities have been mapped to proactive controls as 

suggested in UcedaVelez and Morana (2015).

and bugs are expected to obtain via STRIDE and 

OWASP. However, STRIDE mainly focuses on the 

attacking perspective of software security. On the 

other hand, Application Security Frame (ASF) is a 

threat categorisation model, which helps to identify the 

threats from the defensive perspective. For an in-depth 

data and functional assets, both the attacker view and 

the defensive view for the enumeration of threats were 

considered as essential. As stated previously, the threat-

modelling process only focuses on attacker’s perspective. 

Therefore, to involve the defensive standpoint, a 

ASF. As indicated earlier, a knowledge base is used 

to identify the association between threat categories 

and bug categories through a semantic text similarity 

matching model. The set of countermeasures of ASF and 

summarised proactive control descriptions were used to 

get the semantic similarity between ASF and proactive 

controls.
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Semantic text similarity between ASF and proactive 

controls

The semantic text similarity was calculated for every 

single security control in ASF with every single proactive 

control. The descriptions of ASF security controls and 

proactive controls are not limited to a single phrase. 

Accordingly, the semantic text similarity of each phrase 

of the description of a particular ASF security control 

was calculated concerning each phrase of the description 

of proactive control. Consequently, by borrowing the 

semantic similarity concepts presented in Han et al. 

(2013), the average semantic similarity score between a 

(Pi) was calculated as follows. 

 

where:

Ai : description of ASF having n phrases

Pi : description of proactive controls having m phrases

Vi : similarity between phrase i of ASF and phrase i of 

proactive control

Knowledge base

It contains the facts and rules related to the STRIDE, ASF, 

OWASP T10, proactive controls and semantic similarity 

scores between ASF and proactive controls. A frame-

based approach was used for knowledge representation 

of facts (Merritt, 2012). Below is the structure of the 

frame for STRIDE.

Listing 1: Frame for STRIDE categories

frame (stride,

information disclosure, denial of service, 

Eleven prolog rules were developed to infer the 

association between STRIDE and OWASP T10. Due 

to the space limitations only two rules are listed here 

together with a short description of each. 

Rule 1 - Querying the knowledge base

                  BugCategory, T), TList), 

Rule 1 is used to query the knowledge base. The list of 

unique threat categories can be discovered by querying 

the knowledge base using a bug category. 

Rule 2 - Discovering associated threat category using the 

bug category

isCausedByThreatCategory(BugCategory , T) :-

lacksProactive(BugCategory , P), mapsToSecurity-

Control(P , S),

isWeakendByThreatCategory(S , T)

Rule 2 discovers the associated threat category utilising 

the bug category. The threat category was revealed using 

the subsequent rules on the right-hand side. The lacks 

Proactive (BugCateogry, ProactiveControl) was used 

to discover the proactive controls violated due to the 

given bug category. The association results given by 

the knowledge base were used to create the associations 

between bugs and threats. 

In this research, as a proof-of-concept, a security analysis 

framework called Conexus has been implemented 

to infer the relationships between design and 

implementation artefacts by adhering to the principles 

described previously. Conexus framework has four 

main constituents: threat-based processing, bug-based 

processing, association inferencing, and knowledge base. 

The source code of the implementation can be found in a 

public Github repository 

SecurityFramework. 

Threat-based processing

Conexus required the user to draw the Level-0 or Level-1 

DFD of a particular software application to generate the 

Threat Model. MS TMT (www.microsoft.com/en-us/sdl) 
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is used for this purpose, and it creates a threat model, 

which includes threats categorised according to STRIDE 

categorisation. The threat model generated from MS 

TMT was obtained as an XML, which is further processed 

to extract threats. After that, the extracted threats were 

converted into threat objects, which contains the relevant 

details of risks introduced by this component.

Security bug-based processing

As of now, Conexus framework analyses the source code 

using SonarQube (www.sonarque.org), which is a widely 

used tool for continuous code quality improvements. 

categorised into OWASP T10. The bugs were further 

category objects adhere to OWASP T10. Then the bug 

category objects were passed to association inference 

module.

Association inference module

Association loader was used for querying the knowledge 

base using the bug category objects to identify the 

associated threat categories. A prolog converter was 

built in SWI-Prolog to communicate with Java. Each 

bug category was used to query the knowledge base, 

and the associated threat type results were held inside 

the association loader. The associated threat type results 

and the bug objects were sent to the association linker. 

Threat category objects from STRIDE transformer and 

associated threat types and bug objects from association 

loader were the input to the association linker. 

Accordingly, the association objects were generated. 

Knowledge base

The knowledge base was built using the SWI-Prolog. All 

the facts and rules aforementioned are contained in the 

knowledge base. The knowledge base has the capability 

of revising when the OWASP T10 or proactive controls 

are revised. On the other hand, knowledge base explicitly 

allows expanding the knowledge contained in it using the 

additional knowledge of security experts.

RESULTS AND DISCUSSION

lie in the design phase of the software system. A case 

study based evaluation was employed for the evaluation 

process of this approach. 

 DFD of the user authentication component of the 

web application

Case study: User authentication component of a web-

based application

Figure 1 presents the DFD of the user authentication in 

a web-based application. It consists of two processes, 

one external entity, and a single data store together with 

modelling is conducted to identify the architectural-

the security bugs at the implementation level. The 

association derived between security bugs and the threats 

are based on the security bug categories and threat 

by the threat modelling process. Similarly, through static 

code analysis, A2, A5, and A6 categories of OWASP 

have  been captured. A1 to A10 are known as the top ten 

highly relevant causes (threat categories) of the security 

application

Threat type Number of threats

Tampering 4

Repudiation 4

Information disclosure 2

Denial of service 9

Elevation of privilege 8
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countermeasures were applied to remove the security 

bugs in the source code. 

 After repeating static analysis, it was observed that 

previously designated A2, A5 and A6 bug categories 

were removed successfully. Hence, it was evident that 

design level leads to the security bugs at the code level. 

However, the accuracy of the results obtained from the 

experiments depends on the analysis outputs given from 

SonarQube, MS TMT as well as the semantic similarity 

scores. 

 The associations derived from the Conexus 

framework depicted the possible causes for a security 

bug. It was observed that, even with such an association, 

source code because the DFD was a Level 0 diagram. 

Therefore, it is crucial to identify the lower level DFDs 

can be used conjointly with the re-engineering process of 

a previously developed software where the association 

security in the software. Implementation of a software 

application sometimes includes the use of legacy 

software components. Thus, the Conexus framework can 

be used to ensure the security of the legacy components, 

a security-focused agile development environment, 

Conexus framework can be used to ensure the security of 

the working software in each product increment.

CONCLUSIONS

This paper presents a knowledge modelling-based 

design phase. The association is derived by identifying 

threat categories and bug categories based on well-known 

show the fact that architectural level security issues lead 

to security bugs in the code base. On the other hand, the 

conceptual approach of this research could be applied 

to interlink various other software artefacts to discover 

unthought-of-yet-interesting hidden relationships of 

software systems. 

 The framework could serve as a stepping stone to the 

lacking previously. On the other hand, the knowledge 

aspects. As future work, the experiments are expected 

to repeat for large-scale open source software systems. 

Furthermore, it is planned to improve this research to 

utilising attack trees or case-based reasoning.
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